Node.java
/**
*
* @author santosh
*/
public class Node {
Node left;
Node right;
Node parent;
int val;
int height;
int balanceFactor;
int NaV = -99999999; // not a value.
public Node(){
left = right = parent = null;
val = height = balanceFactor = NaV;
}
public Node(int val){
left = right = parent = null;
this.val = val;
height = balanceFactor = NaV;
}
public Node(int val, int key){
left = right = parent = null;
this.val = val;
this.balanceFactor = key;
height = NaV;
}
}
BST.java
/**
*
* @author santosh
*/
public class BST {
private Node root;
public BST(){
root = null;
}
/**
* Insert a node in given tree.
* @param val
*/
public void insert(int val){
Node t = new Node(val);
if(root == null){
root = t;
return;
}else{
Node temp = root, prev = null;
while(temp != null){
prev = temp;
if(val > temp.val){
temp = temp.right;
}else{
temp = temp.left;
}
}
t.parent = prev; // assign the parent to new node;
if(val > prev.val)
prev.right = t;
else
prev.left = t;
}
return;
}
/**
* Find the node whose data is given.
* @param t
* @param val
* @return
*/
public Node findNode(Node t, int val){
Node temp = null;
if(t != null && t.val == val)
return t;
if(t.left != null)
temp = findNode(t.left, val);
if(temp == null & t.right != null)
temp = findNode(t.right, val);
return temp;
}
/**
* Returns the min value in a non-empty binary search tree.
* @param t
* @return
*/
public Node findMin(Node t){
if(t != null && t.left == null)
return t;
else
return findMin(t.left);
}
/**
* Returns the min value in a non-empty binary search tree.
* @param t
* @return
*/
public Node findMax(Node t){
if(t != null && t.right == null)
return t;
else
return findMax(t.right);
}
/**
* Print path of each leaf node in recursive order.
* @param sum
* @param t
* @return
*/
public int printPath(int sum, Node t){
while(t != null){
System.out.print("\t" + t.val);
sum += t.val;
t = t.parent;
}
return sum;
}
/**
* Print leaf nodes
* @param t
*/
public void printLeafNodes(Node t){
if(t != null && t.left == null && t.right == null){
System.out.print("\t" + t.val);
}
if(t != null){
printLeafNodes(t.left);
printLeafNodes(t.right);
}
return;
}
/**
* find path for each leaf node
* @param t
*/
public void findPath(Node t){
if(t != null && t.left == null && t.right == null) {
System.out.print("Path: ");
int sum = printPath(0, t);
System.out.println("\tSum: " + sum);
}
if(t != null){
findPath(t.left);
findPath(t.right);
}
return;
}
/**
* Check if any path has given sum.
* @param t
* @param sum
* @return
*/
public boolean hasPathSum(Node t, int sum){
if(t == null)
return (sum == 0);
else{
sum -= t.val;
return hasPathSum(t.left, sum) || hasPathSum(t.right, sum);
}
}
/**
* Make mirror image of given tree.
* @param t
*/
public void mirrorTree(Node t){
if(t == null)
return;
Node temp = null;
mirrorTree(t.left);
mirrorTree(t.right);
temp = t.left;
t.left = t.right;
t.right = temp;
return;
}
/**
* For each node in a binary search tree, create a new duplicate node, and insert
* the duplicate as the left child of the original node.
* The resulting tree should still be a binary search tree. So the tree...
* 2
* / \
* 1 3
* Is changed to...
* 2
* / \
* 2 3
* / /
* 1 3
* /
* 1
*
**/
public void doubleTree(Node t){
if(t == null)
return;
Node oldLeft = null;
doubleTree(t.left);
doubleTree(t.right);
oldLeft = t.left;
t.left = new Node(t.val);
t.left.parent = t; // assign parent to new node
t.left.left = oldLeft;
if(t.left.left != null)
t.left.left.parent = t.left; // update the parent for old node
}
/**
* Given two trees, return true if they are structurally identical.
* @param t1
* @param t2
* @return
*/
public boolean checkMatchingTree(Node t1, Node t2){
// both empty
if(t1 == null && t2 == null)
return true;
else if(t1 != null && t2 != null)
return (t1.val == t2.val &&
checkMatchingTree(t1.left, t2.left) &&
checkMatchingTree(t1.right, t2.right));
else // one of them empty
return false;
}
/**
* Count number of nodes in a given tree.
* @param t
* @return
*/
public int countTNode(Node t){
if(t == null)
return 0;
else
return (countTNode(t.left) + 1 + countTNode(t.right));
}
/**
* For the key values 1...numKeys, how many structurally unique binary
* search trees are possible that store those keys?
* Strategy: consider that each value could be the root.
* Recursively find the size of the left and right subtrees.
* @param key
* @return
*/
public int countTrees(int key){
if(key <= 1)
return 1;
else{
// there will be one value at the root, with whatever remains
// on the left and right each forming their own subtrees.
// Iterate through all the values that could be the root...
int sum = 0;
int lht, rht, rt = 0;
for(rt=1; rt<=key; rt++ ){
lht = countTrees(rt-1);
rht = countTrees(key-rt);
// number of possible trees with this root == left*right
sum += lht * rht;
}
return sum;
}
}
/**
* Find the maximum depth of a given tree.
* @param t
* @return
*/
public int maxDept(Node t){
if(t == null)
return 0;
int lDepth = maxDept(t.left);
int rDepth = maxDept(t.right);
return (lDepth>rDepth)?(lDepth+1):(rDepth+1);
}
/**
* Print the tree in In-Order.
* @param t
*/
public void printInOrder(Node t){
if(t == null)
return;
printInOrder(t.left);
System.out.print("\t"+t.val);
printInOrder(t.right);
}
/**
* print the tree in Post-Order.
* @param t
*/
public void printPostOrder(Node t){
if(t == null)
return;
printPostOrder(t.left);
printPostOrder(t.right);
System.out.print("\t"+t.val);
}
/**
* Print the tree in Pre-order.
* @param t
*/
public void printPreOrder(Node t){
if(t == null)
return;
System.out.print("\t"+t.val);
printPreOrder(t.left);
printPreOrder(t.right);
}
/**
* Get root of the node.
* @return
*/
public Node getRoot(){
return root;
}
}
/**
*
* @author santosh
*/
public class Node {
Node left;
Node right;
Node parent;
int val;
int height;
int balanceFactor;
int NaV = -99999999; // not a value.
public Node(){
left = right = parent = null;
val = height = balanceFactor = NaV;
}
public Node(int val){
left = right = parent = null;
this.val = val;
height = balanceFactor = NaV;
}
public Node(int val, int key){
left = right = parent = null;
this.val = val;
this.balanceFactor = key;
height = NaV;
}
}
BST.java
/**
*
* @author santosh
*/
public class BST {
private Node root;
public BST(){
root = null;
}
/**
* Insert a node in given tree.
* @param val
*/
public void insert(int val){
Node t = new Node(val);
if(root == null){
root = t;
return;
}else{
Node temp = root, prev = null;
while(temp != null){
prev = temp;
if(val > temp.val){
temp = temp.right;
}else{
temp = temp.left;
}
}
t.parent = prev; // assign the parent to new node;
if(val > prev.val)
prev.right = t;
else
prev.left = t;
}
return;
}
/**
* Find the node whose data is given.
* @param t
* @param val
* @return
*/
public Node findNode(Node t, int val){
Node temp = null;
if(t != null && t.val == val)
return t;
if(t.left != null)
temp = findNode(t.left, val);
if(temp == null & t.right != null)
temp = findNode(t.right, val);
return temp;
}
/**
* Returns the min value in a non-empty binary search tree.
* @param t
* @return
*/
public Node findMin(Node t){
if(t != null && t.left == null)
return t;
else
return findMin(t.left);
}
/**
* Returns the min value in a non-empty binary search tree.
* @param t
* @return
*/
public Node findMax(Node t){
if(t != null && t.right == null)
return t;
else
return findMax(t.right);
}
/**
* Print path of each leaf node in recursive order.
* @param sum
* @param t
* @return
*/
public int printPath(int sum, Node t){
while(t != null){
System.out.print("\t" + t.val);
sum += t.val;
t = t.parent;
}
return sum;
}
/**
* Print leaf nodes
* @param t
*/
public void printLeafNodes(Node t){
if(t != null && t.left == null && t.right == null){
System.out.print("\t" + t.val);
}
if(t != null){
printLeafNodes(t.left);
printLeafNodes(t.right);
}
return;
}
/**
* find path for each leaf node
* @param t
*/
public void findPath(Node t){
if(t != null && t.left == null && t.right == null) {
System.out.print("Path: ");
int sum = printPath(0, t);
System.out.println("\tSum: " + sum);
}
if(t != null){
findPath(t.left);
findPath(t.right);
}
return;
}
/**
* Check if any path has given sum.
* @param t
* @param sum
* @return
*/
public boolean hasPathSum(Node t, int sum){
if(t == null)
return (sum == 0);
else{
sum -= t.val;
return hasPathSum(t.left, sum) || hasPathSum(t.right, sum);
}
}
/**
* Make mirror image of given tree.
* @param t
*/
public void mirrorTree(Node t){
if(t == null)
return;
Node temp = null;
mirrorTree(t.left);
mirrorTree(t.right);
temp = t.left;
t.left = t.right;
t.right = temp;
return;
}
/**
* For each node in a binary search tree, create a new duplicate node, and insert
* the duplicate as the left child of the original node.
* The resulting tree should still be a binary search tree. So the tree...
* 2
* / \
* 1 3
* Is changed to...
* 2
* / \
* 2 3
* / /
* 1 3
* /
* 1
*
**/
public void doubleTree(Node t){
if(t == null)
return;
Node oldLeft = null;
doubleTree(t.left);
doubleTree(t.right);
oldLeft = t.left;
t.left = new Node(t.val);
t.left.parent = t; // assign parent to new node
t.left.left = oldLeft;
if(t.left.left != null)
t.left.left.parent = t.left; // update the parent for old node
}
/**
* Given two trees, return true if they are structurally identical.
* @param t1
* @param t2
* @return
*/
public boolean checkMatchingTree(Node t1, Node t2){
// both empty
if(t1 == null && t2 == null)
return true;
else if(t1 != null && t2 != null)
return (t1.val == t2.val &&
checkMatchingTree(t1.left, t2.left) &&
checkMatchingTree(t1.right, t2.right));
else // one of them empty
return false;
}
/**
* Count number of nodes in a given tree.
* @param t
* @return
*/
public int countTNode(Node t){
if(t == null)
return 0;
else
return (countTNode(t.left) + 1 + countTNode(t.right));
}
/**
* For the key values 1...numKeys, how many structurally unique binary
* search trees are possible that store those keys?
* Strategy: consider that each value could be the root.
* Recursively find the size of the left and right subtrees.
* @param key
* @return
*/
public int countTrees(int key){
if(key <= 1)
return 1;
else{
// there will be one value at the root, with whatever remains
// on the left and right each forming their own subtrees.
// Iterate through all the values that could be the root...
int sum = 0;
int lht, rht, rt = 0;
for(rt=1; rt<=key; rt++ ){
lht = countTrees(rt-1);
rht = countTrees(key-rt);
// number of possible trees with this root == left*right
sum += lht * rht;
}
return sum;
}
}
/**
* Find the maximum depth of a given tree.
* @param t
* @return
*/
public int maxDept(Node t){
if(t == null)
return 0;
int lDepth = maxDept(t.left);
int rDepth = maxDept(t.right);
return (lDepth>rDepth)?(lDepth+1):(rDepth+1);
}
/**
* Print the tree in In-Order.
* @param t
*/
public void printInOrder(Node t){
if(t == null)
return;
printInOrder(t.left);
System.out.print("\t"+t.val);
printInOrder(t.right);
}
/**
* print the tree in Post-Order.
* @param t
*/
public void printPostOrder(Node t){
if(t == null)
return;
printPostOrder(t.left);
printPostOrder(t.right);
System.out.print("\t"+t.val);
}
/**
* Print the tree in Pre-order.
* @param t
*/
public void printPreOrder(Node t){
if(t == null)
return;
System.out.print("\t"+t.val);
printPreOrder(t.left);
printPreOrder(t.right);
}
/**
* Get root of the node.
* @return
*/
public Node getRoot(){
return root;
}
}
8 comments:
Great Post, Thanks for sharing.
Transportation from and to PHL airport
Thank you so much for sharing this informative post.. Stay blessed!!
web design uae
public Node findNode(Node t, int val){
Node temp = null;
if(t != null && t.val == val)
return t;
if(t.left != null)
temp = findNode(t.left, val);
if(temp == null & t.right != null)
temp = findNode(t.right, val);
return temp;
}
The above code doesnt work. Please check once
the if condition is not correct,open the following link you will get solution of this problem.
door frame metal detectors manufacturers in India
Thanks for sharing this informative post.
Dentist clinic in Chandigarh
This is what I was looking for from last week. Great work done. :)
Java training in chandigarh
Hi, Good day. How can I implement this code? Like I want to insert a new value? And use the method code above? Sorry, I'm new to JAVA.
Thanks for sharing this interesting blog, i really enjoy while reading this blog.
Pinless phone card
Post a Comment